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1. Introduction

Type II string theory orientifold compactifications can lead to effective four dimensional

theories with gauge symmetries, chiral spectrum of fermions and N = 1 supersymmetry.

Hence, they constitute a candidate string theory incorporating real particle physics. In

particular, type IIA toroidal orientifolds with intersecting D-branes at angles have become

extremely popular in the last years [1], due in part to their relative simplicity and thus

calculability. Recent developments on these models aim to provide more realistic scenarios,

as well as a better understanding of these constructions.1

A recent development was achieved in [6] (see also [7, 8]) where the authors considered

a type IIA string theory compactified on a factorisable T 6/Z2×Z
′
2 orientifold with discrete

torsion [9]. This type of construction admits collapsed or rigid 3-cycles, where intersecting

D6-branes can wrap. Thus such D-branes cannot leave orbifold fixed points. This fact

permitted the authors of [6] to build chiral intersecting D6-brane models with (almost)

absent open string moduli. In other words, massless adjoint fields associated to the D6-

brane positions can be removed from the spectrum, and asymptotic freedom is easier to

achieve. However, the models studied in [6], consist of four families, which makes them

phenomenologically unattractive.

An interesting generalisation to the standard factorisable IIA orientifolds usually con-

sidered in the literature [1] was performed in [10 – 12], where more general compactification

1Meanwhile heterotic orbifold constructions have been improved towards realistic particle physics [2 – 5].
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lattices were allowed. In particular in [11] non-factorisable T 6/Z2×Z2 orientifolds (without

discrete torsion) were studied. In that paper, D6-brane configurations giving rise to chiral

matter on the 4D spacetime were investigated. It was found that intersecting D6-brane

models with non-factorisable compactification lattices, give always rise to even number of

families. This observation resulted in unrealistic particle physics models, thus disfavoured

in comparison with their factorisable cousins.

It is thus natural to ask whether the unsatisfactory phenomenological result found

in [11], can be overcome in compactifications which admit non-factorisable lattices in ad-

dition to rigid cycles where D6-branes can wrap. This is the main question we investigate

in the present paper.

We find that once rigid cycles are present, it is possible to obtain an odd number of

families, as opposed to non-factorisable orientifold models without discrete torsion. Model

building rules in this compactifications depend on the non-factorisable lattice, just as in

the case studied in [11] for the T 6/Z2 × Z2 orientifold (without torison). Encouraged by

these observations, we illustrate the model building rules explicitly by constructing a three

family Pati-Salam model.2 The model preserves N = 1 supersymmetry and contains the

chiral spectrum of a three family Pati-Salam model. Mass terms for all additional fields

can be written down without breaking the Pati-Salam gauge group, i.e. there are no chiral

exotics.

We go beyond our original motivation and reconsider factorisable lattices of T 6/Z2×Z
′
2

(with torsion). Following the same strategy as in the non-factorisable case, we find that

factorisable lattices too admit an odd number of families. Furthermore, this has the bonus

that no tilted tori are required, as it is the case with non-rigid factorisable models [17, 18].

Thus we succeed in providing examples of three-family models in factorisable and non-

factorisable lattices with rigid branes, on toroidal orientifold compactifications with discrete

torsion.

The paper is organised as follows. In the next section we discuss in a general setup

the properties of orientifold constructions with rigid cycles valid for factorisable and non-

factorisable lattices. We present tadpole constraints, spectrum and supersymmetry con-

ditions. In section 3 we illustrate the details of the construction in a fully worked out

example. We first look at a non-factorisable supersymmetric N = 1 three-family model

using rigid visible sector branes as well as hidden semi-rigid and non-rigid branes, as will

be explained in the text. We discuss tadpoles, spectrum and supersymmetry conditions.

We then present the factorisable version of this model, showing how odd number of families

can be obtained from rigid branes without the need of introducing tilted tori. We close in

section 4 with our conclusions.

Throughout the paper, we make extensive use of the results of [6] and [11], which we

advise the reader to consult for more details.

2We focus on the Pati-Salam instead of the Standard Model gauge group in order to automatically

satisfy K-theory constrains [6]. This implies that we consider always an even number of D6-branes per

stack, which then implies a gauge group U(2N).

– 2 –
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2. Orientifolds with rigid cycles

In this section we describe the procedure and rules to construct intersecting D6-brane

models on T 6/Z2 × Z
′
2 orbifolds with discrete torsion [9, 6].

Consider type IIA theory compactified on T 6/Z2 × Z
′
2 where the Z2 generators act as

θ : z1,2 → −z1,2 , θ′ : z2,3 → −z2,3 (2.1)

on the three complex coordinates of the compact space.

Extending the discussion of [6], we allow the T 6 lattice to be either factorisable or

non-factorisable, i.e. the factorisation T 6 = (T 2)3 is not respected by the orbifold action.

Moreover, we choose our compactification such that fundamental lattice vectors can be

expressed as integer linear combinations of fundamental vectors in the factorisable lattice.

The factorisable lattice is a product of three T 2 lattices where each T 2 is obtained by

compactification of the complex planes spanned by the coordinates appearing in (2.1).

The fundamental cycles on these T 2 are denoted by
[

ai
]

and
[

bi
]

, i = 1, 2, 3,

[

a1
]

= (1, 0, 0, 0, 0, 0) ,
[

b1
]

= (0, 1, 0, 0, 0, 0) ,
[

a2
]

= (0, 0, 1, 0, 0, 0) ,
[

b2
]

= (0, 0, 0, 1, 0, 0) ,
[

a3
]

= (0, 0, 0, 0, 1, 0) ,
[

b3
]

= (0, 0, 0, 0, 0, 1) ,

(2.2)

in real coordinates, xa, a = 1, . . . , 6, which are related to the complex coordinates in (2.1)

as zI = x2I−1 + ix2I , I = 1, 2, 3.

It is convenient to give wrapping numbers always with respect to the factorisable basis

as we do in the rest of the paper. This implies that on non-factorisable lattices not all

integer wrapping numbers are allowed (see [11]).

2.1 Rigid cycles

Let us consider first the covering space T 6. We introduce D6-branes at angles, which

are specified by wrapping numbers (ni,mi) along [ai] and [bi]. Thus an orbifold invariant

D6-brane labelled a wraps the three-cycle:

ΠT 6

a =

3
⊗

i=1

(

ni
a [ai] + mi

a [bi]
)

. (2.3)

As explained in [6], these cycles of T 6 are inherited by the orbifold quotient. Moreover

under the action of Z2×Z
′
2, a three-cycle on T 6 has three images, all of them with the same

wrapping numbers as the initial three-cycle. Therefore, a three-cycle can be identified with

[ΠB
a ] = 4 [ΠT 6

a ]. Computing the intersection number of two such cycles gives

[ΠB
a ] · [ΠB

b ] = 4 [ΠT 6

a ] · [ΠT 6

b ] (2.4)

where [ΠT 6

a ] · [ΠT 6

b ] has to be worked out for each non-factorisable lattice separately as was

shown in [11] (see also section 3).
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Besides these untwisted cycles there are also independent collapsed three-cycles for

each of the three twisted sectors, θ, θ′ and θθ′. In order to determine these, we need to

know the fixed points associated to the compactification lattice. For non-factorisable tori,

these have to be found in each lattice independently. We perform this counting explicitly

in the next section. Here we give general expressions for a given lattice.

Consider first the θ twisted sector. We denote the location of the fixed torus on the

first two complex planes by [Eθ
Ia

], where Ia labels the fixed point through which a stack

of branes Da passes in this sector. For the Z2 × Z
′
2 orbifold these fixed points correspond

to collapsed two-cycles in the blown up Calabi-Yau space. These two-cycles are combined

with a one-cycle in the third plane n3[ã3] + m3[b̃3] in order to form a three-cycle in the

θ-twisted sector. Here, [ã3] and [b̃3] generate the θ-fixed torus. For the factorisable lattice,

they coincide with
[

a3
]

and
[

b3
]

. Let us denote a basis of such twisted three-cycles as

[αθ
I, n] = 2 [Eθ

I ] ⊗ [ã3], [αθ
I, m] = 2 [Eθ

I ] ⊗ [b̃3] . (2.5)

The extra factor of two is due to the action of θ′ on the twisted three-cycles in the third

complex plane. Analogously, the basic twisted three-cycles in the θ′ and θθ′ twisted sectors

are defined as

[αθ′

I, n] = 2 [Eθ′

I ] ⊗ [ã1], [αθ′

I, m] = 2 [Eθ′

I ] ⊗ [b̃1],

[αθθ′

I, n] = 2 [Eθθ′

I ] ⊗ [ã2], [αθθ′

I, m] = 2 [Eθθ′

I ] ⊗ [b̃2]. (2.6)

The intersection number between a pair of such cycles is easy to compute knowing that

[Eg
I ] · [Eh

J ] = −2δIJ δ gh. Thus the full twisted three-cycles are given by

[Πg
I,a] = n

ig
a [αg

I, n] + m
ig
a [αg

I, m]. (2.7)

Given two three-cycles

[Πg
I,a] = n

ig
a [αg

I, n] + m
ig
a [αg

I, m]

and

[Πh
J,b] = nih

b [αh
J, n] + mih

b [αh
J, m] ,

with g, h = θ, θ′, θθ′, the intersection between them is

[Πg
I,a] · [Π

h
J,b] = 4 δIJδ gh (n

ig
a m

ig
b − m

ig
a n

ig
b ) = 4 δIJδ gh (n

ig
a m

ig
b − m

ig
a n

ig
b ), (2.8)

where we have again identified intersection points under the orbifold action and we have

used that [ãi] · [b̃j] = −δij . In this notation, for the twisted sectors g = θ, θ′, θθ′ one has

ig = 3, 1, 2, respectively.

Now that we know how to describe the non-factorisable untwisted and twisted sector

three-cycles, we construct rigid D6-branes in this setup. That is, we consider fractional D6-

branes which are wrapping special Lagrangian 3-cycles, and are charged under all three dif-

ferent twisted sectors of the orbifold. The location of a fractional D6-brane has to be invari-

ant under the orbifold action and thus it must run through four fixed points for each twisted

sector. Denoting this set of fixed points as Sa
g , the fractional D-brane wraps the cycle

ΠF
a =

1

4
ΠB

a +
1

4

∑

I∈Sa
θ

ǫθ
a,I Πθ

I, a +
1

4

∑

J∈Sa
θ′

ǫθ′

a,J Πθ′

J, a +
1

4

∑

K∈Sa
θθ′

ǫθθ′

a,K Πθθ′

K,a (2.9)
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where the 1/4 factor indicates that one needs four fractional branes in order to get a bulk

brane. Also ǫθ
a,I , ǫθ′

a,J , ǫθθ′

a,K = ±1 define the charge of the fractional brane a with respect

to the massless fields living at the various fixed points. In the next section we consider

only ǫg
J = 1, as this is enough to illustrate our main point. However, more complicated

situations can be arranged. A longer discussion can be found in [6] for the factorisable case.

2.2 Tadpoles and K-theory

We now mod out this theory by the orientifold action ΩR, where Ω is the world sheet

parity and R acts by

R : zI → zI .

This action introduces four types of O6-planes associated to the actions ΩR ΩRθ, ΩRθ′,

ΩRθθ′. The corresponding O-plane can be either a O6(−,−) with negative RR charge

and tension or an exotic O6(+,+) with positive RR charge and tension. Consistency with

discrete torsion implies that we need to introduce an odd number of exotic O6-planes [6].

In the rest of the paper, we take a single exotic plane associated to OΩR.

Taking this into account, we can define the homology classes of the cycles wrapped by

the O6-planes as follows

ΠO6 = ΠΩR + ΠΩRθ + ΠΩRθ′ + ΠΩRθθ′ (2.10)

where

ΠΩR ∼ −2[a1] × [a2] × [a3], ΠΩRθ ∼ −2[b1] × [b2] × [a3],

ΠΩRθ′ ∼ −2[a1] × [b2] × [b3], ΠΩRθθ′ ∼ −2[b1] × [a2] × [b3]. (2.11)

For factorisable lattices, the ∼ signs in (2.11) are equality signs. For non-factorisable

lattices, additional factors of two appear, if they are needed to obtain closed cycles [11].

In the rest of the paper, we consider only the AAA orientifold3 for factorisable com-

pactifications and the (related) CCC [11] setup for non-factorisable ones. With our con-

ventions for the wrapping numbers (2.3), the tadpole condition

∑

a

Na(Π
F
a + ΠF

a′) = 4ΠO6 (2.12)

can be expressed as untwisted

∑

a Nan
1
an

2
an

3
a = −16,

∑

a Nam
1
am

2
an

3
a = −16,

∑

a Nam
1
an

2
am

3
a = −16,

∑

a Nan
1
am

2
am

3
a = −16,

(2.13)

3We are using the notation introduced in [13].
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Representation Multiplicity

a
1
2 (Π′

a · Πa + ΠO6 · Πa)

a
1
2 (Π′

a · Πa − ΠO6 · Πa)

( a, b) Πa · Πb

( a, b) Π′
a · Πb

Table 1: Chiral spectrum for intersecting D6-branes [6].

plus twisted
∑

a Nan
1
aǫ

θ′

a,I = 0,
∑

a Nan
2
aǫ

θθ′

a,J = 0,
∑

a Nan
3
aǫ

θ
a,K = 0,

(2.14)

tadpole constraints. The minus sign on the r.h.s. of the first equation in (2.13) reflects the

appearance of an exotic O-plane in the case with discrete torsion [6]. As explained in [11] the

number of O-planes is reduced in non-factorisable lattices. However, for some wrapping

numbers one unit corresponds to a half-cycle as they refer to cycles on the factorisable

lattice. These two effects cancel resulting in the universal expressions (2.13), (2.14). The

lattice dependence arises due to the fixed point structure.

The tadpole conditions ensure the cancellation of non-Abelian anomalies. On top

of that, one has to impose K-theory constraints [14]. As discussed for example in the

appendix of [6] these imply that a probe SU(2) stack of branes must host an even number

of fundamentals of SU(2). Following their lead, we impose the sufficient condition that all

our stacks contain an even number of branes.

2.3 Spectrum

The resulting spectrum can now be calculated, as has been done in [6]. We reproduce it

here for completeness. Firstly, D6-branes wrapping three-cycles not invariant under ΩR

give rise to the gauge group U(Na). If two such branes intersect at an angle open strings

stretched between them will have massless excitations. These give rise to chiral multiplets

transforming under the product of the two gauge groups on the branes. The resulting

massless spectrum is given in table 1, where also the situation that brane Da intersects with

its orientifold image Da′ is included. In the latter case there is only one gauge group factor

due to the orientifold identification. Further, branes that are invariant under the orientifold

action ΩRΠF
a = ΠF

a do not yield a unitary group but rather a simplectic group USp(2Na).

In the Z2 × Z
′
2 orbifold, fractional branes invariant under ΩR are those placed on top of

an exotic O6(+,+) plane. In our choice, they sit on top of the OΩR plane (see [6] for further

details). Finally we recall that no adjoint fields from an aa sector arise for rigid branes.

– 6 –
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2.4 Supersymmetry

Although intersecting brane models which break supersymmetry explicitly are not neces-

sarily inconsistent, they usually suffer from instabilities. In order to avoid that to happen,

we focus on models with residual N = 1 supersymmetry. This amounts to the condition

that the angles θI
a (I = 1, 2, 3) every brane Da forms with the horizontal coordinate axes

in each complex plane have to add up to zero [15],

θ1 + θ2 + θ3 = 0 mod 2π. (2.15)

Often metric moduli can be adjusted such that (2.15) is satisfied. For later use, we specify

the metric of the compact space Gab (a, b = 1, . . . , 6) to be diagonal4 in the coordinate

basis of the xa (with zI = x2I−1 + i x2I being the complex coordinates in (2.1)) and define

U I =

√

G2I,2I

G2I−1,2I−1
, I = 1, 2, 3. (2.16)

For the factorisable lattice the U I are the complex structure moduli of the T 2 factors.

3. Explicit models

In this section we consider a concrete model which serves to illustrate the model building

rules, as well as how the number of families restriction can be implemented once rigid

branes are introduced. We do this in detail in a simple non-factorisable lattice which

serves to demonstrate our main result. We then construct the factorisable version of the

same model, in order to show how three family models arise in that case too. Besides the

family requirement, we also need to impose twisted and untwisted tadpole conditions as

well as supersymmetry to the models. These constraints impose strong conditions on the

brane wrapping numbers.

3.1 Non-factorisable lattice

As a minimal non-factorisable example, consider a lattice {ei} where the third and fifth

lattice vectors are given by

e3 = (0, 0, 1, 0,−1, 0) , e5 = (0, 0, 1, 0, 1, 0) (3.1)

and keep the rest in a factorisable form (AAA lattice). Employing the Lefschetz fixed

point theorem one finds that there are 8 θ-fixed tori, 16 θ′-fixed tori and 8 θθ′ fixed tori.

The 8 θ-fixed tori are (underlined entries can be permuted)

(0, 0, 0, 0, x, y),

(

1

2
, 0, 0, 0 , x, y

)

,

(

1

2
,
1

2
, 0, 0 , x, y

)

,

(

1

2
,
1

2
, 0,

1

2
, x, y

)

.

(3.2)

4Off-diagonal components are projected out.
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Here, x and y are compactified on a two dimensional lattice generated by (2, 0) and (0, 1).

The 16 θ′-fixed tori are

(x, y, 0, 0, 0, 0),

(

x, y, 0,
1

2
, 0, 0

)

,

(

x, y, 0,
1

2
, 0,

1

2

)

,

(

x, y,
1

2
, 0,−

1

2
, 0

)

,

(

x, y,
1

2
,
1

2
,−

1

2
, 0

)

,

(

x, y,
1

2
,
1

2
,−

1

2
,
1

2

)

,

(

x, y,
1

2
, 0,

1

2
, 0

)

,

(

x, y,
1

2
,
1

2
,
1

2
, 0

)

,

(

x, y,
1

2
,
1

2
,
1

2
,
1

2

)

,

(x, y, 1, 0, 0, 0),

(

x, y, 1,
1

2
, 0, 0

)

,

(

x, y, 1,
1

2
, 0,

1

2

)

.

(3.3)

Now, the compactification lattice for (x, y) is generated by (1, 0) and (0, 1). Finally the 8

θθ′-fixed tori are

(0, 0, x, y, 0, 0),

(

1

2
, 0, x, y, 0, 0

)

,

(

1

2
,
1

2
, x, y, 0, 0

)

,

(

1

2
,
1

2
, x, y, 0,

1

2

)

,

(3.4)

where the compactification lattice for (x, y) is generated by (2, 0) and (0, 1).

Let us now compute the intersection number between two rigid D6-branes given a

compactification lattice. To do this, remember first that we denote a D6-brane by its bulk

wrapping numbers as (2.3) [11]:

D6a =
(

m1
a

[

a1
]

+ n1
a

[

b1
])

×
(

m2
a

[

a2
]

+ n2
a

[

b2
])

×
(

m3
a

[

a3
]

+ n3
a

[

b3
])

, (3.5)

where the one-cycles are listed in (2.2), and mi
a, ni

a (i = 1, 2, 3) are integers, we see that

the cycle (3.5) is closed on the compactification lattice if

n2
a = even and n3

a = even , (3.6)

otherwise the brane has to wrap the corresponding cycle of the factorisable lattice twice [11].

Now, the contribution from the bulk piece can be expressed as:

[ΠB
a ] · [ΠB

b ] = 4 [ΠT 6

a ] · [ΠT 6

b ] = 2

3
∏

i=1

(ni
am

i
b − mi

an
i
b) (3.7)

where we have used the results in [11] to compute the intersection number [ΠT 6

a ] · [ΠT 6

b ].

Adding the contribution from the twisted parts, using (2.8) and (2.9), we find that the

general expression for the intersection number between fractional branes in the present

lattice can be written as follows:

Iab =
1

8

3
∏

i

(ni
am

i
b − mi

an
i
b) +

δθ
ab

4

(

n3
a

2
m3

b − m3
a

n3
b

2

)

+
δθ′

ab

4

(

n1
am

1
b − m1

an
1
b

)

+

+
δθθ′

ab

4

(

n2
a

2
m2

b − m2
a

n2
b

2

)

, (3.8)

– 8 –
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where δg
ab denotes the number of common g-fixed points between brane stacks a and b.

Computing the net number of families5 Iab − Ia′b,

Iab − Ia′b = −
1

4

[

m3
an

3
bm

1
bm

2
bn

1
an

2
a + m1

an
1
bm

2
bm

3
bn

2
an

3
a + m1

an
1
bm

2
am

3
an

2
bn

3
b +

+m2
an

2
bm

1
bm

3
bn

1
an

3
a + m3

an
3
b δθ

ab + m1
an

1
b δθ′

ab + m2
an

2
b δθθ′

ab

]

, (3.9)

it can be seen that odd numbers can be easily obtained. Indeed, one can check that if two

branes have less than four fixed points in common in some sectors, that is δg
ab 6= (4, 4, 4), as

well as requiring suitable mi’s to be odd, it is possible to have an odd number of families.

We show later that a similar condition applies to the factorisable case.

Finally in order to fully compute the spectrum, we need the intersection between the

O6-planes and the fractional branes. In the present compactification lattice, the cycles

wrapped by the O6-planes (2.10), (2.11) can be written as [11]

ΠO6 = 2
[

(−1, 0) × (1, 0) × (2, 0) + (0, 1) × (0,−1) × (2, 0)

+(1, 0) × (0, 1) × (0,−1) + (0, 1) × (2, 0) × (0,−1)
]

, (3.10)

where the sign in the first contribution comes from the exotic O6-plane. Then the inter-

section between the O6-planes with the branes can be computed using the results in [11],

and boils down to the following expression

ΠO6 · Π
F
a = ΠO6 · Π

T 6

a =
∑

Oj

∏

i

(ni
Ojm

i
a − mi

Ojn
i
a) , (3.11)

where ni
Oj correspond to ‘wrapping numbers’ for the O6-planes (3.10) and the sum is over

the four types of O6-planes.

3.2 Three family Pati-Salam model

We are now ready to construct a three family Pati-Salam model using rigid as well as hidden

semi-rigid and non-rigid branes. As discussed in [6], sometimes rigid branes can combine

with other rigid branes to form a bulk brane which can move off the fixed points. Moduli

in the adjoint of a gauge group reappear when this happens. Thus, such a set of branes

forms a non-rigid brane. Branes which can be combined into a bulk brane have the same

wrapping numbers and cancelling twisted charges (see eq. (2.14)). We call branes with the

same wrapping numbers and cancelling twisted charges in one twisted sector, semi-rigid.

These can combine and form a brane which can move away from the fixed points only in

some directions.

A reversed view of this definition starts with a bulk brane. If its location is invariant

under the orbifold, it can split into its four fractional pieces obtained by separating θ, θ′,

θθ′ images and adding contributions from collapsed cycles such that each piece forms a

closed cycle in the blown up orbifold (see eq. (2.9) and [16]). Keeping all such fractional

5We consider the case that the colour group is a subgroup of the gauge symmetry on stack a.
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pieces results in a set which we call non-rigid, while keeping only the images of one Z2

factor, yields a semi-rigid set.

Let us start by describing the model building strategy. We have seen that in order to

get an odd number of families, it is necessary to have some of the fixed points different

from their maximum value, that is δg
ab 6= (4, 4, 4) (four being the maximum in each entry).

Therefore, in order to cancel twisted tadpoles at all fixed points, it will be necessary to

introduce additional branes, compared to the case when all fixed points are shared between

branes6 (that is, when δg
ab = (4, 4, 4)). Care will be taken such that these extra branes do

not introduce exotic chiral matter. A priori one will attach them to the hidden sector.

However, in order to obtain massless GUT Higgs pairs in the spectrum, it will be necessary

to recombine one stack of the additional branes with the stack carrying initially the SU(2)R
gauge symmetry factor of the Pati-Salam group (see below). Finally, we will be interested

in models which preserve N = 1 supersymmetry. This will constrain further the wrapping

numbers of the brane stacks and fix some closed string moduli.

More explicitly, consider first a set of three rigid branes {a1, a2, a3}, the (a priori)

visible sector, which share some, but not all, fixed points in some sectors. In general this

leads to some uncancelled twisted tadpoles among themselves. Therefore it is necessary to

introduce an (a priori) hidden set of branes, such that the twisted tadpoles are cancelled.

In order to minimise this, the two branes {a2, a3} that will give rise to the gauge groups

SU(2)L,R in the Pati-Salam model, are taken such that they share exactly the same set

of fixed points, i.e. δg
a2a3

= (4, 4, 4). Hence, each one will contribute to the same kind

of twisted tadpoles, and we choose them such that these tadpoles are cancelled between

them. Thus we are left with uncancelled twisted tadpoles only from the stack {a1}. In

order to cancel these, we introduce a set of stacks {bi}, such that all twisted tadpoles

from sets {a, b} are cancelled. The set of branes in all stacks {bi} have the same wrapping

numbers and twisted charges with respect to one of the Z2 factors, so that twisted tadpoles

are cancelled among them. Thus they form a stack of semi-rigid branes. Cancellation of

untwisted tadpoles can at last be achieved by introducing suitable sets of hidden sector

branes, without introducing new contributions to the twisted tadpoles. In the model we

construct below, two more of these sets {c, d} will be needed. Stacks within each of the

sets {c} can combine into bulk branes and hence they form non-rigid stacks. Indeed, it

is the requirement of unbroken residual supersymmetry which restricts us to consider all

hidden sector branes to be semi-rigid or non-rigid.

Taking into account all the requirements listed above, we end up with the semi realistic

Pati-Salam-like model specified in table 2. We perform in detail its analysis in what follows.

Let us start by identifying the fixed points through which the visible and hidden

sector branes pass. These are explicitly listed in table 3. Next, we construct the basis of

6An easy way to cancel twisted tadpoles is to consider only branes which share all four fixed points, that

is δ
g

ab = (4, 4, 4). In such case, it is enough to fix appropriately the values of the wrapping numbers ni such

that no tadpoles are left uncancelled (see (2.14)). This trick was used in the four family models constructed

in [6].
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Nα (n1
α,m1

α) (n2
α,m2

α) (n3
α,m3

α)

Na1
= 4 (0, 1) (0,−1) (2, 0)

Na2
= 2 (−1, 1) (4,−3) (0,−1)

Na3
= 2 (1,−3) (−4, 1) (0,−1)

Nb1 = 2 (−4,−1) (−4,−1) (−2, 1)

Nb2 = 2 (4, 1) (4, 1) (−2, 1)

Nc1 = 14 (1, 0) (1, 0) (2, 0)

Nc2 = 14 (−1, 0) (−1, 0) (2, 0)

Nc3 = 14 (1, 0) (−1, 0) (−2, 0)

Nc4 = 14 (−1, 0) (1, 0) (−2, 0)

Nd1
= 12 (1, 0) (0, 1) (0,−1)

Nd2
= 12 (−1, 0) (0, 1) (0, 1)

Table 2: Wrapping numbers for the three family non-factorisable Pati-Salam model.

the twisted three-cycles as defined in (2.5). For brane {a1}, the basis is given by
[

αθ
Ia1, n

]

= 2
[

Eθ
Ia1

]

⊗ [0, 0, 0, 0, 2, 0] , (3.12)
[

αθ′

Ia1, m

]

= 2 [0, 1, 0, 0, 0, 0] ⊗
[

Eθ′

Ia1

]

, (3.13)
[

αθθ′

Ia1, m

]

= 2 [0, 0, 0, 1, 0, 0] ⊗
[

Eθθ′

Ia1

]

, (3.14)

where [Eg
Ia1

]7 correspond to the 4 fixed points associated to brane {a1} in each sector.

These are listed in the first column of table 3. From this basis, we can construct the

twisted 3-cycle which the brane wraps, using (2.7):

[Πθ
I, a1

] = 1·[αθ
Ia1, n] , [Πθ′

I, a1
] = 1·[αθ′

Ia1, m] , [Πθθ′

I, a1
] = −1·[αθθ′

Ia1, m] . (3.15)

Finally, the full fractional cycle (2.9), which the stack {a1} wraps is given by

ΠF
a1

=
1

4
ΠB

a1
+

1

4

4
∑

I

Πθ
I, a1

+
1

4

4
∑

I

Πθ′

I, a1
+

1

4

4
∑

I

Πθθ′

I, a1
. (3.16)

For stacks {ai} (i = 2, 3), we have instead

[αθ
Iai

, m] = 2 [Eθ
Iai

] ⊗ [0, 0, 0, 0, 0, 1] , (3.17)

7We are being sloppy here, using the same symbol to denote fixed points, tori or cycles. However, it

should be clear from the context what we are referring to.
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[αθ′

Iai
, n] = 2 [1, 0, 0, 0, 0, 0] ⊗ [Eθ′

Iai
] , [αθ′

Iai
, m] = 2 [0, 1, 0, 0, 0, 0] ⊗ [Eθ′

Iai
] , (3.18)

[αθθ′

Iai
, n] = 2 [0, 0, 2, 0, 0, 0] ⊗ [Eθθ′

Iai
] , [αθθ′

Iai
, m] = 2 [0, 0, 0, 1, 0, 0] ⊗ [Eθθ′

Iai
] , (3.19)

where [Eg
Iai

] correspond to the four fixed points associated to brane {ai} in each sector (see

table 3). The twisted 3-cycle which the brane {a2} wraps (stack {a3} is very similar) is then:

[Πθ
I, a2

] = −1 · [αθ
Ia2, n] ,

[

Πθ′

I, a2

]

= −1 · [αθ′

Ia1, m] + 1 · [αθ′

Ia2, m] ,
[

Πθθ′

I, a2

]

= 4 · [αθθ′

Ia2, n] − 1 · [αθθ′

Ia2, m] . (3.20)

Thus, the full fractional cycle (2.9), which the stack {a2} wraps is given by (again, stack

{a3} is very similar)

ΠF
a2

=
1

4
ΠB

a2
+

1

4

4
∑

I

Πθ
I, a2

+
1

4

4
∑

I

Πθ′

I, a2
+

1

4

4
∑

I

Πθθ′

I, a2
. (3.21)

For all other branes, one can find the fractional cycles in a similar fashion.

Before proceeding to calculate the spectrum, we need to clarify some subtleties regard-

ing the fixed points denoted with a ⋆ in table 3. Consider for example the point (0, 0, 1, 0)⋆

in the θθ′ sector of brane {a1} (see table 3). Suppose it denoted the locus of a fixed torus,

as in section 3.1, then it would be equivalent to zero. However, here we are looking at

the one-cycle (or collapsed three-cycle) wrapped by the D-brane and it matters in which

direction the one-cycle extends. Consider the full cycle (0, 0; 0,−x; 1, 0) for brane {a1},

this is equivalent to (0, 0; 1,−x; 0, 0) and it is therefore shifted in the third direction. One

has to take this into account when counting the number of common fixed points between

a pair of branes. In computing the intersection number between two branes, the shifted

(second) version has to be used. If the brane extended along the third direction instead,

the fixed cycle would indeed be equivalent to the one located at the origin and contribute

only once to the counting of common fixed points.

We are now ready to calculate the chiral spectrum arising from the Pati-Salam stacks

of branes {a, b} and the auxiliary branes {c, d}. For reasons mentioned already and to

be discussed shortly, we assign the visible sector to the set {a1, a2, a3, b1}. The spectrum

arising from open strings stretched between different branes within this set is displayed in

table 4, where we removed anomalous U(1) factors from the gauge groups.

Notice further that the stack of branes {b} has been arranged such that, not only the

{a1} twisted tadpoles are cancelled, but also such that the net intersection between branes

{b} and {a1} vanishes. Second, chiral matter arising from possible intersections between

brane {a1} and branes {c, d} is eliminated by shifting the latter branes away from the

origin, such that the twisted contribution, as well as the bulk parts of the intersection

numbers vanish (this possibility was also used in the models of [6]). Thus, no extra chiral

matter charged under the Pati-Salam U(4) arises.

Now let us look at some of the phenomenological implications of the model. As far as

the Standard Model matter and the electroweak Higgs is concerned, it would have been
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θ sector a1 a2,3 bi ci di

Eθ
1 (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)

Eθ
2 (0,1/2,0,0) (1/2,1/2,0,0) (0,1/2,0,0) (0,0,1,0)⋆ (1/2,0,0,0)

Eθ
3 (0,0,0,1/2) (0,0,0,1/2) (0,0,0,1/2) (1/2,0,0,0) (0,0,0,1/2)

Eθ
4 (0,1/2,0,1/2) (1/2,1/2,0,1/2) (0,1/2,0,1/2) (1/2,0,1,0)⋆ (1/2,0,0,1/2)

θ′ sector

Eθ′

1 (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)

Eθ′

2 (0,1/2,0,0) (0,1/2,0,0) (0,1/2,0,0) (1,0,0,0) (0,1/2,0,0)

Eθ′

3 (1,0,0,0) (0,0,0,1/2) (1,0,0,1/2) (0,0,1,0) (0,0,0,1/2)

Eθ′

4 (1,1/2,0,0) (0,1/2,0,1/2) (1,1/2,0,1/2) (1/2,0,1/2,0) (0,1/2,0,1/2)

θθ′ sector

Eθθ′

1 (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)

Eθθ′

2 (0,0,1,0)⋆ (1/2,1/2,0,0) (0,1/2,0,0) (0,0,1,0)⋆ (1/2,0,0,0)

Eθθ′

3 (0,1/2,0,0) (0,0,0,1/2) (0,0,0,1/2) (1/2,0,0,0) (0,0,0,1/2)

Eθθ′

4 (0,1/2,1,0)⋆ (1/2,1/2,0,1/2) (0,1/2,0,1/2) (1/2,0,1,0)⋆ (1/2,0,0,1/2)

Table 3: Fixed points for the non-factorisable branes in the Pati-Salam model of table 2.

Sector SU(4) × SU(2)L × SU(2)1 × SU(2)2 SU(2) × USp(28)4 × SU(12)2

(a1 a2) 3 × (4, 2, 1, 1) (1; 1, 1, 1, 1; 1, 1)

(a1 a3) 3 × (4, 1, 2, 1) ''
(a2 a3) 14 × (1, 2, 2, 1) ''
(a′2 a2) 14 × (1, 1, 1, 1) ''
(a′3 a3) 12 × (1, 1, 1, 1) + 2 × (1, 1, 3, 1) ''
(a1 b1) 3 × (4, 1, 1, 2) ''
(a′1 b1) 3 × (4, 1, 1, 2) ''
(a2 b1) 23 × (1, 2, 1, 2) ''
(a3 b1) 15 × (1, 1, 2, 2) ''
(b1 b′1) 6 × (1, 1, 1, 3) + 16 × (1, 1, 1, 1) ''

Table 4: Model of table 2: Massless spectrum from open strings stretching between different branes

within the ‘visible sector set’ {a, b1}.

enough to consider the branes of set {a} as the observable sector, and to identify the

SU(2)1 with SU(2)R of the Pati-Salam model. However, the GUT Higgs pair allowing
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to break the Pati-Salam group spontaneously to the Standard Model group, would be

missing. Attaching the stack {b1} to the visible sector yields a way to get GUT Higgs pairs

as well. Provided the potential is such that we can turn on vev’s for bi-fundamentals of

SU(2)1 × SU(2)2 the product of the two SU(2)’s can be broken to its diagonal subgroup.

Identifying that diagonal subgroup with SU(2)R we obtain a Pati-Salam model with three

generations of quarks and leptons as well as providing pairs of electroweak and GUT

Higgses. In our example model, there will be a surplus of Higgs pairs of both types.

If this mechanism is realised, we arrive at an interesting conclusion. The requirements

of obtaining three generations for quarks and leptons as well as the presence of GUT

Higgs pairs in the massless spectrum are connected. To obtain three generations we had

to leave some of the twisted tadpoles arising from branes hosting standard model matter

uncancelled. The extra branes needed for twisted tadpole cancellation now also contribute

the GUT Higgs pair to the spectrum. Choosing instead of the stack {b1} the stack {b2}

would give a very similar way of obtaining the GUT Higgs pairs.

Hence, the final gauge group arising from the visible sector is, as shown in table 4.

On the other hand, the hidden sector yields the gauge groups U(2) × USp(28)2 × U(12)2.

However, by taking some flat directions we can deform these semi and non-rigid branes

into bulk D-branes. Then the final gauge group, upon eliminating anomalous U(1) factors

is SU(2) × USp(28) × SU(12).

Finally, we look at supersymmetry. This imposes, from branes {a2, a3} the condition

arctan U1 + arctan
3U2

4
=

π

2
; arctan 3U1 + arctan

U2

4
=

π

2
. (3.22)

These two conditions provide the same relation between U1, U2, namely:

U1 =
4

3U2
. (3.23)

On the other hand, supersymmetry on branes {b} requires

arctan
U1

4
+ arctan

U2

4
= π + arctan

U3

2
. (3.24)

Plugging condition (3.23) into this expression gives

arctan
1

3U2
+ arctan

U2

4
= π + arctan

U3

2
, (3.25)

which has a non trivial solution

U3 =
8 + 6(U2)2

11U2
. (3.26)

The other hidden branes {c, d} do not give new constraints.

3.3 The factorisable orbifold

In this section we show that, following the same strategy as in the previous section, it is pos-

sible to get a three family left-right symmetric model from factorisable lattices with discrete

torsion, without the need of introducing tilted tori, as in the case without torsion [17, 18].
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Nα (n1
α,m1

α) (n2
α,m2

α) (n3
α,m3

α)

Na1
= 4 (0, 1) (0,−1) (1, 0)

Na2
= 2 (−1, 1) (4,−3) (0,−1)

Na3
= 2 (1,−3) (−4, 1) (0,−1)

Nb1 = 2 (−4,−1) (−4,−1) (−1, 1)

Nb2 = 2 (4, 1) (4, 1) (−1, 1)

Nc1 = 12 (1, 0) (1, 0) (1, 0)

Nc2 = 12 (−1, 0) (−1, 0) (1, 0)

Nc3 = 12 (1, 0) (−1, 0) (−1, 0)

Nc4 = 12 (−1, 0) (1, 0) (−1, 0)

Nd1
= 4 (0, 1) (0,−1) (1, 0)

Nd2
= 4 (0, 1) (0, 1) (−1, 0)

Ne1
= 12 (1, 0) (0, 1) (0,−1)

Ne2
= 12 (−1, 0) (0, 1) (0, 1)

Table 5: Wrapping numbers for Pati-Salam model in the factorisable version of 2.

That this is the case, can be easily seen from the analogue of (3.9) in the factorisable

case. This is simply:

Iab − Ia′b = −
1

2

[

m3
an

3
bm

1
bm

2
bn

1
an

2
a + m1

an
1
bm

2
bm

3
bn

2
an

3
a + m1

an
1
bm

2
am

3
an

2
bn

3
b +

+m2
an

2
bm

1
bm

3
bn

1
an

3
a + m3

an
3
b δθ

ab + m1
an

1
b δθ′

ab + m2
an

2
b δθθ′

ab

]

. (3.27)

From this expression it becomes clear that once some of the δg
ab’s are taken different from its

maximum value, i.e. δg
ab 6= (4, 4, 4), one can get odd numbers of families (again, combined

with suitable choices of the wrapping numbers). Moreover, it is also easy to see from this

expression why the models considered in [6] gave always even number of families.

As an explicit example, we consider the factorisable version of the non-factorisable

three family model discussed in the previous section. The wrapping numbers and brane

content are listed in table 5. In this case, one can easily get the fixed point structure,

fractional cycles and intersection numbers using the results of [6]. For the spectrum, we

simply show the factorisable analogue of table 4 in table 6.

Notice that, compared with the same type of model in the previous section, in the fac-

torisable case we need to introduce one extra stack of auxiliary branes {e}, in order to fully

cancel untwisted tadpoles. In this respect, the non-factorisable model is more attractive.
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Sector SU(4) × SU(2)L × SU(2)1 × SU(2)2 SU(2) × USp(24)4 × SU(4)2 × SU(12)2

(a1 a2) 3 × (4, 2, 1, 1) (1; 1, 1, 1, 1; 1, 1; 1, 1)

(a1 a3) 3 × (4, 1, 2, 1) ''
(a2 a3) 26 × (1, 2, 2, 1) ''
(a′2 a2) 6 × (1, 3, 1, 1) + 20 × (1, 1, 1, 1) ''
(a′3 a3) 14 × (1, 1, 1, 1) ''
(a1 b1) 3 × (4, 1, 1, 2) ''
(a′1 b1) 3 × (4, 1, 1, 2) ''
(a2 b1) 23 × (1, 2, 1, 2) ''
(a3 b1) 15 × (1, 1, 2, 2) ''
(b1 b′1) 18 × (1, 1, 1, 1) ''

Table 6: Model of table 5: Massless spectrum from open strings stretching between different branes

within the ‘visible sector set’ {a, b1}.

Notice also that, as in the previous section and in [6], intersections of the auxiliary

branes with the U(4) brane are cancelled off by shifting those branes away from the origin.

Furthermore, the supersymmetry conditions (3.23), (3.26) are the same for this case.

4. Discussion

Motivated by the recent advances in intersecting D-brane model building, we studied

T 6/Z2×Z
′
2 orientifolds in type IIA which admit rigid cycles and (non)-factorisable lattices.

We have shown that brane pairs which do not pass through the same set of fixed points,

together with suitable choices of the wrapping numbers, allow for constructions of three

family non-factorisable models with semi realistic particle spectra. We demonstrated this

explicitly in an N = 1, three family, Pati-Salam example. There are no chiral exotics, Pati-

Salam invariant mass terms for all exotics are allowed. So, at the present stage, there are no

obvious reasons against the possibility that all exotic matter decouples. In addition to the

requirement of three families and no chiral exotics, tadpole cancellation and supersymmetry

impose strong constraints on the wrapping numbers for the brane configurations. Hence

one may expect only few models with all these characteristics to be available.

A question which needs to be addressed is to actually check whether vector-like exotics

can be decoupled. For that one needs to analyse the superpotential in the effective theory

as it arises from the concrete intersecting brane model. However, we emphasise that our

original motivation was not to get a fully realistic model at this stage, but to show how

non-factorisable lattices can give rise to three generation models.

Another interesting feature of the model we studied is that the same branes which are

needed for cancelling the twisted tadpoles, {b}, also produce the GUT Higgses needed to

break the Pati-Salam group down to the Standard Model group (these were not present

in [6] if viewed as a four family model). Thus, these extra branes are not just needed for

twisted tadpole cancellation but also for phenomenological reasons. However, as discussed

in the text, the mechanism requires non-zero vev’s for some scalars. Again, it would be
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desirable to turn on that vev under good knowledge of the superpotential. (Since the

corresponding multiplet is massless, it is conceivable that there is indeed a flat direction

along the required vev.)

As a fortunate byproduct of our study of non-factorisable lattices, we have found that

the very same strategy to get odd number of families works equally well for the factorisable

case without the need to introduce tilted tori as it is necessary in the case of non-rigid D6-

brane models [17, 18]. We showed this in the example of a factorisable version of the

Pati-Salam non-factorisable model presented. The matter and gauge group content is

very similar to the non-factorisable case. However, the factorisable lattice requires the

introduction of one extra set of hidden branes, {e}, in order to fully satisfy untwisted

tadpole conditions. This in turn gives rise to a larger gauge group as well as further extra

matter. In this respect, the non-factorisable version of the Pati-Salam model we have

studied is favoured.

We expect the same trick to get odd number of families for other non-factorisable

lattices to continue being valid, upon appropriate choice of the wrapping numbers. It is

also plausible that other non-factorisable lattices will require less number of hidden branes

in order to fully cancel tadpoles. Compared to our minimal choice, however, the rank of

the gauge group will be reduced and it might become harder to embed the Standard Model

gauge group.

We have just started exploration of these type of models, and thus our results are

far from exhaustive. There are still several open problems that need investigation. For

example, we did not touch on the issue of introducing fluxes along the lines of [6], to

stabilise some of the closed string moduli. Further, we concentrated on a Pati-Salam model

in order to sidestep the problem of imposing K-theory constraints, which are automatically

satisfied when the number of branes per stack is even. It would be important to explore

possible strategies to minimise the number of K-theory constraints such that three family

MSSM like models can be investigated (see for instance [19]).

In the case of heterotic compactifications on non-factorisable lattices (for recent studies

see [20 – 22]) it has been observed that the same massless spectra can be obtained from

factorisable orbifolds together with a generalised notion of discrete torsion [23]. If that

observation is caused by some deeper relation between generalised discrete torsion and

non-factorisable compactifications it would be interesting to find a type II analogue. Such

relations can yield important input into landscape studies of type II compactifications (for

recent results see [24] and references therein).
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